Joy Technology Co.,Limited

SMT Equipment∣SMT parts∣SMT Solution provider

joy@joysmt.com

joysmt maintenace center

Technique & Support

Location  : Home > Service> Technique & Support

Ball Grid Array, BGA

Time:2012-03-28    Source:本站

A Ball Grid Array or BGA package is a form of surface mount technology, or SMT package that is being used increasingly for integrated circuits.

The BGA offers many advantages and as a result it is being used increasingly in the manufacture of electronic circuits.

The Ball Grid Array, BGA package was developed out of the need to have a more robust and convenient package for integrated circuits with large numbers of pins. With the levels of integration rising, some integrated circuits had in excess of 100 pins.

A photo of a ball grid array package alongside a UK penny to give an indication of the size.

The conventional quad flat pack style packages had very thin and close spaced pins, and these were very easy to damage, even in a controlled environment. Additionally they required very close control of the soldering process otherwise the level of solder bridges and poor joints rose. From a design viewpoint, the pin density was such that taking the tracks away from the IC also proved to be problematic as there could be congestion in some areas. The BGA package was developed to overcome these problems, and improve reliability from the soldered joints.


Ball Grid Array BGA aims

The Ball Grid Array was developed to provide a number of benefits to IC and equipment manufacturers as well as providing benefits to the eventual users of equipment. Some of the BGA benefits over other technologies include:

  • Efficient use of printed circuit board space, allowing connections to be made under the SMD package and not just around its periphery
  • Improvements in both thermal and electrical performance. BGA packages can offer power and ground planes for low inductances and controlled impedance traces for signals as well as being able to route heat away via the pads, etc.
  • Improvements in manufacturing yields as a result of the improved soldering. BGAs allow wide spacing between connections as well as a better level of solderability.
  • Reduced package thickness which is a great advantage when many assemblies need to be made much thinner, e.g. mobile phones, etc.
  • Improved re-workability resulting from larger pad sizes, etc.

These advantages have meant that despite initial scepticism about the package, it provides some useful improvements in many circumstances..


What is a BGA package?

The Ball Grid Array, BGA, uses a different approach to the connections to that used for more conventional surface mount connections. Other packages such as the quad flat pack, QFP, used the sides of the package for the connections. This meant that there was limited space for the pins which had to be spaced very closely and made much smaller to provide the required level of connectivity. The Ball Grid Array, BGA, uses the underside of the package, where there is a considerable area for the connections.

Diagram of an SMD BGA showing the solder ball arrangement underneath the package itself.

SMD BGA Ball Grid Array package diagram

The pins are placed in a grid pattern (hence the name Ball Grid Array) on the under-surface of the chip carrier. Also rather than having pins to provide the connectivity, pads with balls of solder are used as the method of connection. On the printed circuit board, PCB, onto which the BGA device is to be fitted there is a matching set of copper pads to provide the required connectivity.

Apart from the improvement in connectivity, BGAs have other advantages. They offer a lower thermal resistance between the silicon chip itself than quad flat pack devices. This allows heat generated by the integrated circuit inside the package to be conducted out of the device onto the PCB faster and more effectively. In this way it is possible for BGA devices to generate more heat without the need for special cooling measures.

A close-up photo of a ball grid array package showing both top and underside.

In addition to this the fact that the conductors are on the underside of the chip carrier means that the leads within the chip are shorter. Accordingly unwanted lead inductance levels are lower, and in this way, Ball Grid Array devices are able to offer a higher level of performance than their QFP counterparts.


BGA package types

In order to meet the variety of requirements for different types of assembly and equipment, a number of BGA variants have been developed.

  • MAPBGA - Moulded Array Process Ball Grid Array:   This BGA package is aimed at low-performance to mid-performance devices that require packaging with low inductance, ease of surface mounting. It provides a low cost option with a small footprint and high level of reliability.
  • PBGA - Plastic Ball Grid Array:   This BGA package is intended for mid- to high-performance devices that require low inductance, ease of surface mounting, relatively low cost, while also retaining high levels of reliability. It has some additional copper layers in the substrate that enable increased power dissipation levels to be handled.
  • TEPBGA - Thermally Enhanced Plastic Ball Grid Array:   This package provides for much higher heat dissipation levels. It uses thick copper planes in the substrate to draw heat from the die to the customer board.
  • TBGA - Tape Ball Grid Array:   This BGA package is a mid- to high-end solution for applications needing high thermal performance without an external heatsink.
  • PoP - Package on Package:   This package may be used in applications where space is at a real premium. It allows for stacking a memory package on top of a base device.<%

Joy Technology Co.,Limited

Copyright © 2012-2023 Joy Technology

Office address: Building D,Guosheng industrial Park,Dalang street,Longhua district,Shenzhen,China

Factory address:,Wanfeng Innovation Technology Park, No.1048 Shatou,Chang'an town, Dongguang city,Guangdong province